Show that...is an isomorphism.
Solution.
For the reflexive property (R), we can note that \(A \xrightarrow{1_A} A\) acts as it’s own inverse. Since it leaves every object in place, applying it a second time would also do nothing so \(1_A \circ 1_A = 1_A\text{.}\) If we define \(f = 1_A\) and \(g = 1_A\text{,}\) then the statements \(f \circ g = 1_A\) and \(g \circ f = 1_A\) hold true and \(1_A\) is an isomorphism.
For the symmetric property (S), we’re given that \(A \xrightarrow{f} B\) is an isomorphism with inverse \(B \xrightarrow{g} A\text{.}\) By the definition of inverse, we know \(g \circ f = 1_A\) and \(f \circ g = 1_B\text{.}\) These are precisely the two statements that define \(B \xrightarrow{g} A\) as the inverse of \(A \xrightarrow{f} B\text{,}\) just with the order reversed. By including both possible composition orders in the definition, it guarantees that \(f\) is the inverse of \(g\) if and only if \(g\) is the inverse of \(f\text{.}\)
For the transitive property, we’re given that \(A \xrightarrow{f} B\) and \(B \xrightarrow{k} C\) are both isomorphisms. Let \(B \xrightarrow{f^{-1}} A\) be the inverse of \(f\) such that \(f^{-1} \circ f = 1_A\) and \(f \circ f^{-1} = 1_B\text{,}\) and let \(C \xrightarrow{k^{-1}} B\) be the inverse of \(k\) such that \(k^{-1} \circ k = 1_B\) and \(k \circ k^{-1} = 1_C\text{.}\) Consider the composition \(C \xrightarrow{f^{-1} \circ k^{-1}} A\text{:}\)
- Consider \((f^{-1} \circ k^{-1}) \circ (k \circ f)\text{.}\) By the associative property, we have \((f^{-1} \circ k^{-1}) \circ (k \circ f) = f^{-1} \circ (k^{-1} \circ k) \circ f\text{.}\) Since \(k^{-1} \circ k=1_B\text{,}\) it follows that \(f^{-1} \circ (k^{-1} \circ k) \circ f = f^{-1} \circ 1_B \circ f = f^{-1} \circ f = 1_A\text{.}\)
- Consider \((k \circ f) \circ (f^{-1} \circ k^{-1})\text{.}\) By the associative property, we have \((k \circ f) \circ (f^{-1} \circ k^{-1}) = k \circ (f \circ f^{-1}) \circ k^{-1} \text{.}\) Since \(f \circ f^{-1} = 1_B\text{,}\) it follows that \(k \circ (f \circ f^{-1}) \circ k^{-1} = k \circ 1_B \circ k^{-1} = k \circ k^{-1} = 1_C\)
- Given \((f^{-1} \circ k^{-1}) \circ (k \circ f) = 1_A\) and \((k \circ f) \circ (f^{-1} \circ k^{-1}) = 1_C\text{,}\) we can then conclude that \(A \xrightarrow{k \circ f} C\) is an isomorphism with an inverse of \(C \xrightarrow{f^{-1} \circ k^{-1}} A\text{.}\)