In each of \(\mathcal{S}\text{,}\) \(\mathcal{S}^{\downarrow_\bullet^\bullet \downarrow}\text{,}\) and \(\mathcal{S}^{\circlearrowright}\text{...}\)
We’re given that \(\mathbf{0}\) is an initial object and \(X \xrightarrow{f} \mathbf{0}\) is a map. We’re attempting to show that (a) for every \(X \xrightarrow{g} \mathbf{0}\) we have \(g=f\) and that (b) \(X\) itself is initial.
By defining \(\mathbf{0}\) as an intial object, we know that for any object \(X\) in the category there is exactly one map \(\mathbf{0} \xrightarrow{\phi_X} X\text{.}\) Since \(\mathbf{0}\) is itself an object of the category, there is exactly one map \(\mathbf{0} \xrightarrow{\phi_\mathbf{0}} \mathbf{0}\text{.}\) Furthermore, every domain needs an identity map, so the only possible map \(\phi_\mathbf{0}: \mathbf{0} \rightarrow \mathbf{0}\) we could possibly have is the identity map \(\phi_\mathbf{0} = 1_\mathbf{0}\text{.}\)
Consider the compositions \(f \circ \phi_X\) and \(g \circ \phi_X\text{.}\) In the first case, we have \(\mathbf{0} \xrightarrow{\phi_X} X \xrightarrow{f} \mathbf{0}\) defining a map \(\mathbf{0} \rightarrow \mathbf{0}\text{.}\) Since there is precisely one such map, it must be the unique identity map \(1_\mathbf{0}\text{.}\) Likewise, \(\mathbf{0} \xrightarrow{\phi_X} X \xrightarrow{g} \mathbf{0}\) must also be the same map \(1_\mathbf{0}\text{.}\) It follows that \(f \circ \phi_X = g \circ \phi_X = 1_\mathbf{0}\text{.}\)
If we assume \(f \neq g\text{,}\) then there needs to exist some "point" \(\mathbf{1} \xrightarrow{x} X\) with \(f x \neq g x\text{.}\) However, the property of \(\mathbf{0}\) being an initial object in the category says that we must have exactly one map \(\mathbf{0} \rightarrow \mathbf{1}\text{.}\) It follows from uniqueness of \(\mathbf{0} \rightarrow \mathbf{1}\) that we have a unique composition \(\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X\text{.}\)
In the category \(\mathcal{S}\text{,}\) the "points" of \(X\) are maps which correspond to each element of \(X\) and "point to" themselves. That means that each of the compositions \(\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f} \mathbf{0}\) and \(\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{g} \mathbf{0}\) are effectively a map from \(\mathbf{0} \rightarrow \mathbf{0}\text{.}\) Since there can only be exactly one such map \(\mathbf{0} \rightarrow \mathbf{0}\) (the identity map \(\mathbf{1}_\mathbf{0}\) on that single element ), these compositions must be the same map. By precomposing with our maps \(f, g\) we see that \(X \xrightarrow{f} \mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X\) and \(X \xrightarrow{g} \mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X\) are both effectively the identity map \(1_X\text{.}\) This contradicts our choice of \(f \neq g\text{.}\) The uniqueness of a map \(\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f} \mathbf{0}\) ensures the uniqueness of the composition \(\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{1_X} X \xrightarrow{f} \mathbf{0}\text{,}\) making \(X\) an initial object with the sole map \(X \rightarrow X\) being the identity \(1_X\text{.}\)
In the category \(\mathcal{S}^{\circlearrowright}\text{,}\) our "points" are the elements \(X^{\circlearrowright \alpha}\) fixed under the operation \(\alpha\text{.}\) Here a point is a map \(\mathbf{1} \xrightarrow{x} X^{\circlearrowright \alpha}\) such that \(\alpha x = x\text{.}\) In this situation, we also know \(f_D \alpha = \alpha' f_A\) so the following compositions should all result in "the same map":
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f} \mathbf{0}
\end{equation*}
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{\alpha} X_D \xrightarrow{f_D} \mathbf{0}
\end{equation*}
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f_A} X_A \xrightarrow{\alpha'} \mathbf{0}
\end{equation*}
In the category \(\mathcal{S}^{\downarrow_\bullet^\bullet \downarrow}\text{,}\) we need to preserve source and target relations. Namely, for any point \(\mathbf{1} \xrightarrow{x} X\) we need \(f_D s x = s' f_A x\) amd \(f_D t x = t' f_A x\text{.}\) However, there’s precisely one map from \(0 \rightarrow 1\text{,}\) so \(s'\) and \(t'\) both need to evaluate to the same object. We essentially have an equivalence between the following compositions:
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f} \mathbf{0}
\end{equation*}
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{s} X_D \xrightarrow{f_D} \mathbf{0}
\end{equation*}
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{t} X_D \xrightarrow{f_D} \mathbf{0}
\end{equation*}
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f_A} X_D \xrightarrow{s'} \mathbf{0}
\end{equation*}
\begin{equation*}
\mathbf{0} \rightarrow \mathbf{1} \xrightarrow{x} X \xrightarrow{f_A} X_D \xrightarrow{t'} \mathbf{0}
\end{equation*}
I’m a little uncertain about the rigor of these solutions. Hopefully the follow-up questions will give me more to go on.